
Every ambitious AB testing system has the same 
architecture, with seven core components. For an 
experimentation program to generate ROI, they all have 
to work together. Let's walk through each of these 
components, and the opportunities and failure modes 
they present us with.

Building a modern 
experimentation stack



In a previous era, data teams that wanted to run 
experiments had to rely on an open-source 
distributed compute platform like Spark or Hive. 
This forced teams to build bespoke solutions, 
since these systems didn't have a canonical 
method of implementation.

Nowadays, organizations 
can build upon a Modern 
Data Stack, which includes 
a data warehouse like 
Snowflake, Databricks, 
Redshift, or BigQuery, and 
a transformation layer like 
dbt or Airflow.

These new tools enable companies 
to run experiments early and often.
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What is an experiment?
An experiment is a tool for understanding cause and effect. By controlling inputs to a set 
of experiment subjects and measuring outputs, we gain knowledge about the input/output 
relationship. We quantify that knowledge using statistics.

The subjects of experiments are generally users who 
have a User ID and/or a Session ID. Some of these 
users see version A, and others see version B, 
randomly, and we compare the two groups.

� A new algorithm for recommendations, search, or matchin�
� A new product feature (or the choice to remove a feature�
� Marketing copy, design alternative�
� Anything you want to test!

The inputs to experiments can 
include things like:

� Conversions (binary outcome�
� Revenue (continuous outcome�
� Any measurable subject behavior

The outputs of experiments will 
include things like:

Inputs

Subjects

Outputs
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Every experimentation system has the same architecture

There's extensive evidence that we are all bad at 
predicting whether new features improve or 
degrade performance; in fact only about 1/3rd 
of features lead to positive outcomes. 
Experimentation is the best tool to efficiently 
figure out what works, and what does not.

Each of these components has depth and 
complexity, but for experimentation to generate 
meaningful ROI, they all have to work together. 
When even a single component isn’t working, it 
can really set your experimentation practice 
back.

Companies that have 
realized this, like 

 built big in-house 
experimentation platforms, 
using their large-scale 
engineering resources. And 
every one of these systems 
has the same architecture.

Airbnb, 
Microsoft, Meta, and 
Netflix,

Let’s walk through each of these components, 
and the opportunities and failure modes they 
present us with.
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There are  to solve here:three problems

�� How do you serve experiments quickly�
�� How do you randomize properly�
�� How do you instrument what you did?

To most people, randomization is probably the 
most familiar component of an experimentation 
workflow. It’s a process that selects users 
randomly and independently from any attributes 
they possess.
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Under the hood, all 
commercial feature-flag 
tooling looks essentially 
the same. They all have a 
way to convey experiment 
configurations that are 
synced onto clients every 
15 minutes or so.

Randomization



With experiment metadata stored locally, it 
becomes a quick, low-latency process to split 
users into different groups. Typically, they have 
a function called “getVariant,” which sends an 
event back to your warehouse, identifying that 
one specific user was assigned to one specific 
experiment.

For randomization, the best practice is to use 
md5() hashes. Hashing is important, because 
whether you conduct your randomization offline 
or online, you can precisely replicate the 
process. It’s idempotent — If the user hits the 
experiment 10 times, they’ll end up in the same 
treatment group each time.

ServergetExperiments()

User

Customer Side Managed By

Experiment Platform

A B

getVariant (user, context)

md5 (user, experiment)

exposure logging

sync every


15 min

Pro Tip: Use md5() hashes for assignment
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Metrics

Once you turn to the fact table, the best way to 
make an experimentation program more 
powerful is to use business metrics. Too many 
companies just use the metrics that are available 
via existing tooling, which tends toward shallow 
metrics like click-conversions. You can boost 
those metrics, but what you really want to show 
is that you boosted revenue. Ask yourself the 
question: If you show your experiment result to 
your CFO, will they care?

In experimentation, a metric is a measurement 
of subject-level activity that occurs after 
assignment. Metrics are created by aggregating 
(e.g. summing, counting, etc.) events (facts).

It’s fair to estimate that 
80% of a data team’s work 
is to define and serve high-
quality metrics to different 
places, but this is 
something that a lot of 
experimentation programs 
get wrong.

The first thing to emphasize is that in 
experimentation, you want to define metrics by 
their underlying facts. A fact table enables you 
to model atomic actions that happen at a 
specific moment in time. For experimentation, 
you need a timestamp to know if a purchase or 
upgrade happened before or after the user was 
in the experiment.



7

To get real value from experimentation, you 
want to use financial data, such as from Stripe, 
and you want to be connected to the data 
warehouse.

Because teams are so used to shallow click 
metrics, they usually focus on steps higher up in 
the funnel, like signups or form submissions.

The biggest gap between Airbnb/Netflix/et al. and commercial tools is how easily you can 
use business metrics.

Business Metrics

� Revenue, Activation, Purchase�
� What the CFO read�
� From databases, Stripe, multiple POS

� Signups, “conversions�
� “Directionally accurate�
� From event streams

Shallow Metrics

vs.

ContactSearch Accept Book

Search to Book

Metric Δ p-value

Search to Contact

Contact to Book

Contact to Accept

Accept to Book

-0.31% 0.37

-1.29% 0.04

0.99% 0.06

1.58% 0.00

0.58% 0.11

Most enterprise experimentation teams find that the vast majority of experiments will boost one part 
of the funnel, and then depress another, leaving your results completely neutral. If you use business 
metrics, you’ll have more confidence that you’re not just playing whack-a-mole.



This component is called 
sufficient statistics 
because that’s what you’re 
calculating to fuel your 
inference, but it’s actually 
a significant data 
engineering problem.
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Sufficient 
Statistics



In this DAG, all the action is primarily in that first 
join. It’s basically a big join and then two group-
bys. The group-bys happen very quickly, and 
most data engineering teams don’t use much 
compute on them. But that experiment join is so 
large that it can make up a third of all your 
compute costs, and it's where most of the 
optimizations will happen.

This is the DAG that most pipelines end up 
working with for experimentation. On one end, 
you have the assignment events from the 
randomization system. On the other end, you 
have facts, such as a purchase. And then you 
have to join them together, to determine: of 
these purchases, how many ended up in this 
experiment? You group it first at an experiment-
subject level, and then at an experiment level.
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Experiment Data Pipelines: One big JOIN and some GROUP-BYs 

Assignments Facts

Facts In The 
Experiment

Experiment-SubjectDimensions

Experiment
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Statistical 
Tests

Specifically, you’re not supposed to look at the 
results until they’re done. You make a promise 
saying that you’re going to run an experiment, 
get 1000 samples in both groups, and then look 
at the results and make a decision. Anyone who 
runs an experimentation program knows that 
this never works in practice — peeking is the 
norm.

While there are plenty of conversations around 
the relative benefits of Frequentist vs. Bayesian 
statistics, 95% of experimentation programs 
just run a t-test. While this isn’t necessarily 
wrong, it puts a lot of the onus for expertise on 
your organization, because there’s a bunch of 
failure modes for t-tests.

Simple statistical tests stress the organization

When using t-tests, you need to:

Not look at the results until it’s done


Not test multiple variants without a statistical correction


Not have outliers/power laws
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There are a bunch of other failure modes. For 
example, ratio metrics require adjusting for the 
correlation between the numerator and 
denominator via the delta method to obtain valid 
statistical results.

But there's a few things that can help avoid 
statistical problems. To get around the peeking 
problem, you can use sequential methodology; 
these methods assume that results of an 
experiment are monitored during the entire 
runtime of an experiment. They adjust results in 
a way that false positives are kept low.

Another way to help your organization is through 
variance reduction, and a technique like CUPED. 
By leveraging historical data, you can make your 
experiments run faster. You can save weeks of 
product time and increase your learning rate, 
and there’s really no downside.

Because most teams don’t 
realize these points of 
failure, they end up 
incurring a bunch of false 
positives. So simple 
statistical tests end up 
stressing the organization.

Advanced statistics can speed things up
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Suppose you’re McDonald’s, and you’re running 
an experiment to boost the number of Happy 
Meals sold. The easy way to do it is to run some 
experiment, then see if the purchase number 
goes up. But suppose every time someone walks 
in the door, you make a guess as to whether 
they’ll buy a Happy Meal, and then you compare 
the actual result against your guesses. In that 
paradigm, if someone walked in with 3 children, 
you would guess that they’d get a Happy Meal. 
Suddenly, you are accounting for some natural 
variation, removing it from the equation, and 
getting a lot more signal.

CUPED has become a 
mainstream method at 
companies like 

, but 
because it involves a little 
more complexity from a 
data engineering and 
statistics standpoint, you 
don’t yet see it across the 
commercial landscape.

Airbnb, 
Microsoft, and Meta

CUPED controls for variance that we 
can predict

Improve # of happy meals purchased

We can predict whether some will purchase a 
happy mea�

� Are they a family�
� Have they purchased a happy meal recently?

Goal:

Insight:
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The most common failure mode for 
experimentation is imbalanced treatment 
groups. What you think is a 50/50 split may 
actually be closer to 52/48, and that difference 
almost always signals an underlying issue. The 
types of users throwing off this 50/50 split 
might have low latency, or might be on a broken 
client. The way to check for this is via the sample 
ratio mismatch test, which can diagnose the 
underlying problem. All mainstream 
experimentation tools build this check into their 
day-to-day practice.

Diagnostics

The underlying principle 
of experimentation is 
trust. The whole process is 
a leap of faith, where you 
let a system separate the 
winners from the losers, so 
trust is paramount.

Make sure you have balanced groups

Imbalanced treatment groups

Sample ratio mismatch test (SRM)

These issues are usually due t�
� Latency of experiment deliver�
� Bad implementation

Problem:

Solution:

Causes: US

Treatment TreatmentControl Control

Biased implementation Correct, unbiased implementation

x2 =
(observed - expected)2

—————————————


expectedΣ
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The next diagnostic is outliers. As 'The Black 
Swan' author Nassim Nicholas Taleb 
emphasizes, social phenomena metrics follow 
power laws, and not the finite moment 
distributions that all of statistics is built upon. 
There will always be outliers that skew your 
results, and a small number of observations can 
wreck the analysis.

To handle outliers, one can use non-parametric 
tests that make no assumptions about 
distributions. But in commercial practice, it is 
more common to see :two things

�� Winsorizations, which take the 99th 
percentile as the maximum for the metric�

�� And CUPED, which accounts for prior history.

Monitor your data quality

In product analytics, it’s typically clear that 
something is broken. If the revenue chart drops 
to zero, someone will ring alarm bells. However, 
this is often harder to spot in experiment 
analyses, as the control and treatment groups 
are often equally broken, but that does not show 
up in the difference. So you need a way to 
monitor data quality before running the 
experiment.

Another challenge with 
experimentation is that it 
makes your underlying data 
quality issues invisible.
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Investigations

Every experimentation practice discovers that 
delivering wins is a learning process.

First you have to be able to run an experiment. 
And then you have to learn to diagnose problems 
quickly. And then, you can get to a point where 
you reliably deliver wins.

Investigations help you learn

Elena Verna
Head of Growth & Data @ Dropbox

“First you must learn to test. 
Then you learn to learn. 
Then you learn to win.”
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The most important way to learn is by 
segmenting your results. In one common 
scenario, a team sees a result that looks 
negative, but once they segment it by browser, 
they discover that it's just a browser-specific 
bug, and the overall results are positive.

You need to be able to split 
your results by user 
segment, and make the 
process democratized. 
That’s the only way to 
reliably understand your 
experiment results.

A specific segment of your product's users might particularly dislike your experiment

All

Browser Δ p-value

Chrome

Firefox

IE

Rest

Safari

-0.27% 0.29

2.07% 0.01

2.81% 0.00

-3.66% 0.00

0.86%

-0.74%

0.26

0.33
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Reporting

Reporting is the most underrated part of data 
science. You do all this work with such 
complexity, but in the end, your goal is to drive a 
decision in your organization. The last mile of 
data science is communication.

Bad reporting undermines all your hard work on the math and engineering behind getting results
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The current state of reporting is suboptimal, and 
it creates a norm where data scientists on your 
team have to explain/translate the results in 
order to make them intelligible.

Good reporting assumes no statistics, infrastructure knowledge

The best forms of reporting don’t assume 
context and knowledge. They don’t assume you 
know what a p-value is, or what warehouse 
tables are. They simplify things, so that a junior 
Product Manager straight out of college can 
make a decision based on the results. This is a 
hugely underrated component of getting 
experimentation to scale.

� Don’t try to teach p-values or stat test�
� Don’t list 100 numbers without guidanc�
� Be opinionated, consistent with choice of 

numbers

Good reporting practices:



Conclusion
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Ultimately, building an 
experimentation tool is a 
complicated endeavor — 
there are a bunch of 
different components to get 
into sync. But even if you 
start out with something 
manual and low-fidelity, 
like Jupyter notebooks, you 
can begin to establish a 
flywheel that leads to 
experimentation success.
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When you run your first successful A/B tests, 
and start to influence decision-making on a 
small scale, you will start to increase your 
organization’s interest in experimentation. Once 
you demonstrate that A/B testing leads to 
better decisions, your team will begin to invest in 
experimentation infrastructure, which ultimately 
lowers the labor costs of conducting further 
tests.

At Eppo, we think this flywheel is still a lot more 
painful than it needs to be. We built a tool that 
includes all the necessary components to 
quickly develop the experimentation culture that 
the most successful companies have used to win 
their markets.

Crawl, Walk, Run, Fly Progression

Running more A/B tests 
to support more decisions01

The A/B Testing Flywheel

02 Measuring value to 
decision making

03 Increasing interest 
in A/B testing

04Investing in A/B testing 
infrastructure and data quality

05Lowering human 
cost of A/B testing


