
Every ambitious AB testing system has the same
architecture, with seven core components. For an
experimentation program to generate ROI, they all have
to work together. Let's walk through each of these
components, and the opportunities and failure modes
they present us with.

Building a modern
experimentation stack

In a previous era, data teams that wanted to run
experiments had to rely on an open-source
distributed compute platform like Spark or Hive.
This forced teams to build bespoke solutions,
since these systems didn't have a canonical
method of implementation.

Nowadays, organizations
can build upon a Modern
Data Stack, which includes
a data warehouse like
Snowflake, Databricks,
Redshift, or BigQuery, and
a transformation layer like
dbt or Airflow.

These new tools enable companies
to run experiments early and often.

1

What is an experiment?
An experiment is a tool for understanding cause and effect. By controlling inputs to a set
of experiment subjects and measuring outputs, we gain knowledge about the input/output
relationship. We quantify that knowledge using statistics.

The subjects of experiments are generally users who
have a User ID and/or a Session ID. Some of these
users see version A, and others see version B,
randomly, and we compare the two groups.

� A new algorithm for recommendations, search, or matchin�
� A new product feature (or the choice to remove a feature�
� Marketing copy, design alternative�
� Anything you want to test!

The inputs to experiments can
include things like:

� Conversions (binary outcome�
� Revenue (continuous outcome�
� Any measurable subject behavior

The outputs of experiments will
include things like:

Inputs

Subjects

Outputs

2

Every experimentation system has the same architecture

There's extensive evidence that we are all bad at
predicting whether new features improve or
degrade performance; in fact only about 1/3rd
of features lead to positive outcomes.
Experimentation is the best tool to efficiently
figure out what works, and what does not.

Each of these components has depth and
complexity, but for experimentation to generate
meaningful ROI, they all have to work together.
When even a single component isn’t working, it
can really set your experimentation practice
back.

Companies that have
realized this, like

 built big in-house
experimentation platforms,
using their large-scale
engineering resources. And
every one of these systems
has the same architecture.

Airbnb,
Microsoft, Meta, and
Netflix,

Let’s walk through each of these components,
and the opportunities and failure modes they
present us with.

3

Randomization Metrics

Sufficient Stats

Diagnostics

Statistical Tests

Reporting

Investigations

There are to solve here:three problems

�� How do you serve experiments quickly�
�� How do you randomize properly�
�� How do you instrument what you did?

To most people, randomization is probably the
most familiar component of an experimentation
workflow. It’s a process that selects users
randomly and independently from any attributes
they possess.

4

Under the hood, all
commercial feature-flag
tooling looks essentially
the same. They all have a
way to convey experiment
configurations that are
synced onto clients every
15 minutes or so.

Randomization

With experiment metadata stored locally, it
becomes a quick, low-latency process to split
users into different groups. Typically, they have
a function called “getVariant,” which sends an
event back to your warehouse, identifying that
one specific user was assigned to one specific
experiment.

For randomization, the best practice is to use
md5() hashes. Hashing is important, because
whether you conduct your randomization offline
or online, you can precisely replicate the
process. It’s idempotent — If the user hits the
experiment 10 times, they’ll end up in the same
treatment group each time.

ServergetExperiments()

User

Customer Side Managed By

Experiment Platform

A B

getVariant (user, context)

md5 (user, experiment)

exposure logging

sync every

15 min

Pro Tip: Use md5() hashes for assignment

5

6

Metrics

Once you turn to the fact table, the best way to
make an experimentation program more
powerful is to use business metrics. Too many
companies just use the metrics that are available
via existing tooling, which tends toward shallow
metrics like click-conversions. You can boost
those metrics, but what you really want to show
is that you boosted revenue. Ask yourself the
question: If you show your experiment result to
your CFO, will they care?

In experimentation, a metric is a measurement
of subject-level activity that occurs after
assignment. Metrics are created by aggregating
(e.g. summing, counting, etc.) events (facts).

It’s fair to estimate that
80% of a data team’s work
is to define and serve high-
quality metrics to different
places, but this is
something that a lot of
experimentation programs
get wrong.

The first thing to emphasize is that in
experimentation, you want to define metrics by
their underlying facts. A fact table enables you
to model atomic actions that happen at a
specific moment in time. For experimentation,
you need a timestamp to know if a purchase or
upgrade happened before or after the user was
in the experiment.

7

To get real value from experimentation, you
want to use financial data, such as from Stripe,
and you want to be connected to the data
warehouse.

Because teams are so used to shallow click
metrics, they usually focus on steps higher up in
the funnel, like signups or form submissions.

The biggest gap between Airbnb/Netflix/et al. and commercial tools is how easily you can
use business metrics.

Business Metrics

� Revenue, Activation, Purchase�
� What the CFO read�
� From databases, Stripe, multiple POS

� Signups, “conversions�
� “Directionally accurate�
� From event streams

Shallow Metrics

vs.

ContactSearch Accept Book

Search to Book

Metric Δ p-value

Search to Contact

Contact to Book

Contact to Accept

Accept to Book

-0.31% 0.37

-1.29% 0.04

0.99% 0.06

1.58% 0.00

0.58% 0.11

Most enterprise experimentation teams find that the vast majority of experiments will boost one part
of the funnel, and then depress another, leaving your results completely neutral. If you use business
metrics, you’ll have more confidence that you’re not just playing whack-a-mole.

This component is called
sufficient statistics
because that’s what you’re
calculating to fuel your
inference, but it’s actually
a significant data
engineering problem.

8

Sufficient
Statistics

In this DAG, all the action is primarily in that first
join. It’s basically a big join and then two group-
bys. The group-bys happen very quickly, and
most data engineering teams don’t use much
compute on them. But that experiment join is so
large that it can make up a third of all your
compute costs, and it's where most of the
optimizations will happen.

This is the DAG that most pipelines end up
working with for experimentation. On one end,
you have the assignment events from the
randomization system. On the other end, you
have facts, such as a purchase. And then you
have to join them together, to determine: of
these purchases, how many ended up in this
experiment? You group it first at an experiment-
subject level, and then at an experiment level.

9

Experiment Data Pipelines: One big JOIN and some GROUP-BYs

Assignments Facts

Facts In The
Experiment

Experiment-SubjectDimensions

Experiment

9

Statistical
Tests

Specifically, you’re not supposed to look at the
results until they’re done. You make a promise
saying that you’re going to run an experiment,
get 1000 samples in both groups, and then look
at the results and make a decision. Anyone who
runs an experimentation program knows that
this never works in practice — peeking is the
norm.

While there are plenty of conversations around
the relative benefits of Frequentist vs. Bayesian
statistics, 95% of experimentation programs
just run a t-test. While this isn’t necessarily
wrong, it puts a lot of the onus for expertise on
your organization, because there’s a bunch of
failure modes for t-tests.

Simple statistical tests stress the organization

When using t-tests, you need to:

Not look at the results until it’s done

Not test multiple variants without a statistical correction

Not have outliers/power laws

10

11

There are a bunch of other failure modes. For
example, ratio metrics require adjusting for the
correlation between the numerator and
denominator via the delta method to obtain valid
statistical results.

But there's a few things that can help avoid
statistical problems. To get around the peeking
problem, you can use sequential methodology;
these methods assume that results of an
experiment are monitored during the entire
runtime of an experiment. They adjust results in
a way that false positives are kept low.

Another way to help your organization is through
variance reduction, and a technique like CUPED.
By leveraging historical data, you can make your
experiments run faster. You can save weeks of
product time and increase your learning rate,
and there’s really no downside.

Because most teams don’t
realize these points of
failure, they end up
incurring a bunch of false
positives. So simple
statistical tests end up
stressing the organization.

Advanced statistics can speed things up

0.01

25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Treatment vs. control without variance reduction

0.0

33.0 33.5 34.0 34.5 35.0 35.5 36.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Treatment vs. control with variance reduction

ASAP ASAP

12

Suppose you’re McDonald’s, and you’re running
an experiment to boost the number of Happy
Meals sold. The easy way to do it is to run some
experiment, then see if the purchase number
goes up. But suppose every time someone walks
in the door, you make a guess as to whether
they’ll buy a Happy Meal, and then you compare
the actual result against your guesses. In that
paradigm, if someone walked in with 3 children,
you would guess that they’d get a Happy Meal.
Suddenly, you are accounting for some natural
variation, removing it from the equation, and
getting a lot more signal.

CUPED has become a
mainstream method at
companies like

, but
because it involves a little
more complexity from a
data engineering and
statistics standpoint, you
don’t yet see it across the
commercial landscape.

Airbnb,
Microsoft, and Meta

CUPED controls for variance that we
can predict

Improve # of happy meals purchased

We can predict whether some will purchase a
happy mea�

� Are they a family�
� Have they purchased a happy meal recently?

Goal:

Insight:

13

The most common failure mode for
experimentation is imbalanced treatment
groups. What you think is a 50/50 split may
actually be closer to 52/48, and that difference
almost always signals an underlying issue. The
types of users throwing off this 50/50 split
might have low latency, or might be on a broken
client. The way to check for this is via the sample
ratio mismatch test, which can diagnose the
underlying problem. All mainstream
experimentation tools build this check into their
day-to-day practice.

Diagnostics

The underlying principle
of experimentation is
trust. The whole process is
a leap of faith, where you
let a system separate the
winners from the losers, so
trust is paramount.

Make sure you have balanced groups

Imbalanced treatment groups

Sample ratio mismatch test (SRM)

These issues are usually due t�
� Latency of experiment deliver�
� Bad implementation

Problem:

Solution:

Causes: US

Treatment TreatmentControl Control

Biased implementation Correct, unbiased implementation

x2 =
(observed - expected)2

—————————————

expectedΣ

14

The next diagnostic is outliers. As 'The Black
Swan' author Nassim Nicholas Taleb
emphasizes, social phenomena metrics follow
power laws, and not the finite moment
distributions that all of statistics is built upon.
There will always be outliers that skew your
results, and a small number of observations can
wreck the analysis.

To handle outliers, one can use non-parametric
tests that make no assumptions about
distributions. But in commercial practice, it is
more common to see :two things

�� Winsorizations, which take the 99th
percentile as the maximum for the metric�

�� And CUPED, which accounts for prior history.

Monitor your data quality

In product analytics, it’s typically clear that
something is broken. If the revenue chart drops
to zero, someone will ring alarm bells. However,
this is often harder to spot in experiment
analyses, as the control and treatment groups
are often equally broken, but that does not show
up in the difference. So you need a way to
monitor data quality before running the
experiment.

Another challenge with
experimentation is that it
makes your underlying data
quality issues invisible.

15

Investigations

Every experimentation practice discovers that
delivering wins is a learning process.

First you have to be able to run an experiment.
And then you have to learn to diagnose problems
quickly. And then, you can get to a point where
you reliably deliver wins.

Investigations help you learn

Elena Verna
Head of Growth & Data @ Dropbox

“First you must learn to test.
Then you learn to learn.
Then you learn to win.”

16

The most important way to learn is by
segmenting your results. In one common
scenario, a team sees a result that looks
negative, but once they segment it by browser,
they discover that it's just a browser-specific
bug, and the overall results are positive.

You need to be able to split
your results by user
segment, and make the
process democratized.
That’s the only way to
reliably understand your
experiment results.

A specific segment of your product's users might particularly dislike your experiment

All

Browser Δ p-value

Chrome

Firefox

IE

Rest

Safari

-0.27% 0.29

2.07% 0.01

2.81% 0.00

-3.66% 0.00

0.86%

-0.74%

0.26

0.33

17

Reporting

Reporting is the most underrated part of data
science. You do all this work with such
complexity, but in the end, your goal is to drive a
decision in your organization. The last mile of
data science is communication.

Bad reporting undermines all your hard work on the math and engineering behind getting results

18

The current state of reporting is suboptimal, and
it creates a norm where data scientists on your
team have to explain/translate the results in
order to make them intelligible.

Good reporting assumes no statistics, infrastructure knowledge

The best forms of reporting don’t assume
context and knowledge. They don’t assume you
know what a p-value is, or what warehouse
tables are. They simplify things, so that a junior
Product Manager straight out of college can
make a decision based on the results. This is a
hugely underrated component of getting
experimentation to scale.

� Don’t try to teach p-values or stat test�
� Don’t list 100 numbers without guidanc�
� Be opinionated, consistent with choice of

numbers

Good reporting practices:

Conclusion

19

Ultimately, building an
experimentation tool is a
complicated endeavor —
there are a bunch of
different components to get
into sync. But even if you
start out with something
manual and low-fidelity,
like Jupyter notebooks, you
can begin to establish a
flywheel that leads to
experimentation success.

20

When you run your first successful A/B tests,
and start to influence decision-making on a
small scale, you will start to increase your
organization’s interest in experimentation. Once
you demonstrate that A/B testing leads to
better decisions, your team will begin to invest in
experimentation infrastructure, which ultimately
lowers the labor costs of conducting further
tests.

At Eppo, we think this flywheel is still a lot more
painful than it needs to be. We built a tool that
includes all the necessary components to
quickly develop the experimentation culture that
the most successful companies have used to win
their markets.

Crawl, Walk, Run, Fly Progression

Running more A/B tests
to support more decisions01

The A/B Testing Flywheel

02 Measuring value to
decision making

03 Increasing interest
in A/B testing

04Investing in A/B testing
infrastructure and data quality

05Lowering human
cost of A/B testing

